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1 RLS Adaptive Algorithms for System Identification

Adaptive filtering algorithms are frequently involved in many real-word system identification problems
[1]–[15]. Among them, the recursive least-squares (RLS) algorithm represents a very appealing choice due
to its fast convergence rate, which can be achieved even for highly correlated input signals [16]. However,
the price to pay is a higher computational complexity, as compared to the counterparts that belong to the
least-mean-square (LMS) family.

In this framework, the overall difficulty increases when dealing with the identification of long length
impulse responses, which raise significant challenges in terms of the complexity, convergence/tracking, and
accuracy of the solution. Even the “fast” (i.e., less complex) versions of the RLS algorithm face performance
limitations in such scenarios [17]. A well-known example is related to acoustic echo cancellation, where
the acoustic echo paths are usually modeled as finite impulse response filters that can reach thousands of
coefficients [18].

System identification problems that involve a large parameter space were previously addressed in the
framework of linearly separable systems [19]–[24], which rely on the modeling of rank-1 tensors. For
example, this technique can be applied in case of a long length impulse response g with L =

∏S
s=1 Ls

coefficients, which can be (perfectly) decomposed as a combination of S shorter impulse responses gs of
lengths Ls, s = 1, 2 . . . , S, via the Kronecker product, i.e., g = g1 ⊗ g2 ⊗ · · · ⊗ gS . Clearly, combining
these sets of coefficients using the outer product results in the rank-1 tensor G = gS ◦gS−1 ◦ · · · ◦g1 of size
LS ×LS−1 × · · · ×L1. Furthermore, the components gs (s = 1, 2 . . . , S) can be individually processed and
estimated, resulting in an improved convergence rate of the global solution [19]. This approach allows the
design of different tensorial adaptive algorithms [20] and iterative Wiener filters [21]. As a result, it finds
applications in several frameworks, like multiple-input multiple-output (MIMO) wireless communication
systems [22], [23] and separable linearly constrained beamformers for large-scale antenna systems [24].
The main advantage of this decomposition-based technique that involves the modeling of rank-1 tensors
is related to the dimensionality reduction. Basically, a large problem of size

∏S
s=1 Ls is reformulated and

solved as a combination of smaller solutions, thus resulting in a parameter space with
∑S

s=1 Ls coefficients.
On the other hand, this method can be successfully applied only for linearly separable systems, which is
not the case in many real-world applications, including network and acoustic echo cancellation.

The realistic network and acoustic echo paths cannot be perfectly decomposed as linearly separable
systems and further modeled as rank-1 tensors. However, exploiting the characteristics of the systems
to be identified represents a natural path to follow, in order to overcome the main challenges related to
the estimation of long length impulse responses. In this context, several recent works have focused on
decomposition-based techniques that involve the nearest Kronecker product (NKP) and low-rank approxi-
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mations, e.g., see [25] and the references therein. These methods exploit the singular value decomposition
(SVD) of the corresponding matrix of the reshaped impulse response (obtained by inverse vectorization)
and its low rank feature. As a result, while the conventional system identification approach relies on a
single long length adaptive filter, the NKP-based method obtains the solution using a combination of two
(much) shorter filters. This fits very well in conjunction with fast converging algorithms like RLS. In
addition, since a wide range of real-world systems own low-rank features, this decomposition-based tech-
nique can be applied in the framework of other important applications, e.g., [26]–[30]. Nevertheless, the
NKP-based technique used in these works relies on the second-order decomposition, exploiting the SVD
of the (low-rank) corresponding matrix associated to the impulse response. Extending this technique to a
higher-order decomposition faces the difficulty of dealing with a higher-rank tensor, where its rank results
from a sum of rank-1 tensors. In this context, while the rank of a matrix (related to the second-order
decomposition) is upper limited by the number of its columns, the rank of a higher-order tensor could
exceed its largest dimension. Therefore, the direct extension of the NKP-based technique to a higher-order
decomposition may not be a feasible approach.

Recently, the extension of the NKP-based approach to a third-order decomposition level has been
addressed in [2], targeting a higher dimensionality reduction (i.e., a combination of even shorter filters).
As explained before, this was not a straightforward development, since the direct solution would involve a
third-order tensor, while approximating its rank would be a sensitive issue [31]–[33]. Contrary, in [2], the
rank of this tensor is controlled in terms of a matrix rank, which is limited to small values. The resulting
iterative Wiener filter developed based on this approach has proved to outperform its counterpart that
relies on the previous second-order NKP-based decomposition.

Nevertheless, there are some inherent limitations of the Wiener filter, which are mainly related to
the statistics’ estimates and the time-invariant framework. These further influence the accuracy of the
solution, respectively the applicability in real-time applications working in time-variant environments.
Therefore, an adaptive filtering RLS-based algorithm that exploits the third-order tensor decomposition
method would represent an appealing practical choice in many real-world applications. We should note that
there is not a straightforward extension from the Wiener filter to the RLS algorithm under the third-order
decomposition framework, due to the particular connection between the components filters and the specific
parameters. In addition, while the iterative Wiener filter developed in [2] sequentially alternates between
the solutions resulted from three sets of Wiener-Hopf equations, it would be desirable for the adaptive
algorithm to update its component filters in parallel, which is highly useful in terms of the modularity
of implementation. Due to these features (i.e., parallel updates and specific combination of three shorter
filters), such an adaptive filtering solution would be an appealing choice among the family of RLS-based
algorithms, especially in the framework of system identification problems that deal with long length impulse
responses. In addition, the solution could be applied in the framework of other applications that require
good tracking capabilities, like those related to the control of unmanned aerial vehicles [34], [35].

Motivated by these aspects, we further build on the third-order tensor decomposition method and design
an RLS algorithm that exploits this efficient technique. The resulting algorithm updates in parallel and
further combines the coefficients of three adaptive filters of much shorter lengths (as compared to the length
of the original impulse response), which leads to important advantages in terms of the main performance
criteria. In the following, the third-order tensor decomposition technique is summarized in Section 2. Next,
the proposed RLS-based algorithm is developed in Section 3. Simulations results are provided in Section 4,
in the context of echo cancellation. Finally, an overall discussion and several important remarks that follow
these results are summarized in Section 5.

2 Third-Order Tensor Decomposition of the Impulse Response

In this section, we summarize the background from [2], which recently introduced the third-order tensor
decomposition-based approach, in the framework of linear system identification. To this purpose, let
us consider a single-input single-output (SISO) scenario with real-valued signals. The main goal is to
identify an unknown impulse response with L real-valued coefficients, which are grouped into the vector

h =
[
h1 h2 · · · hL

]T
, where the superscript T denotes the transpose operator. Thus, at the discrete-
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time index n, the reference (or desired) signal results in

d(n) = hTx(n) + w(n) = y(n) + w(n), (1)

where x(n) =
[
x(n) x(n− 1) · · · x(n− L+ 1)

]T
contains the L most recent time samples of the

zero-mean input signal x(n), y(n) = hTx(n) is the output signal, and w(n) is a zero-mean additive noise,
which is uncorrelated with x(n).

Next, let us consider that the length of h can be expressed as L = L11L12L2, with L11 ≥ L12 and
L11L12 ≫ L2. Therefore, the impulse response can be equivalently decomposed as [2]

h =

L2∑
i=1

hi
2 ⊗

L12∑
j=1

hij
12 ⊗ hij

11

 =

L2∑
i=1

L12∑
j=1

hi
2 ⊗ hij

12 ⊗ hij
11, (2)

where the (shorter) component impulse responses hij
11, h

ij
12, and hi

2 have the lengths L11, L12, and L2,
respectively, while ⊗ denotes the Kronecker product. At this point, since hi

2 is considered very short, there
is no need to decompose it but to consider that the Kronecker product of the other two components is low
rank [36]. Consequently, (2) becomes

h =

L2∑
l=1

hl
2 ⊗

 P∑
p=1

hlp
12 ⊗ hlp

11

 =

L2∑
l=1

P∑
p=1

hl
2 ⊗ hlp

12 ⊗ hlp
11, (3)

where P < L12. This is a reasonable approach, since in practice most of the system impulse responses are
low rank [25].

As we can notice, an equivalent representation of (3) in a third-order tensor form is

H =

L2∑
l=1

P∑
p=1

hlp
11 ◦ h

lp
12 ◦ h

l
2 =

P∑
p=1

(
L2∑
l=1

Hlp

)
=

P∑
p=1

Hp, (4)

where ◦ is the outer product, while Hlp = hlp
11 ◦ h

lp
12 ◦ hl

2 and Hp =
∑L2

l=1H
lp are third-order tensors (of

different ranks), which belong to RL11×L12×L2 . As we can notice, Hp corresponds to the canonical polyadic
(CP) decomposition [37], i.e., the factorization of a third-order tensor into a sum of rank-1 third-order
tensors, Hlp, l = 1, 2, . . . , L2. In this context, L2 represents the rank of Hp, i.e., the minimum number of
rank-1 tensors that generates Hp. Hence, H is the sum of P third-order tensors of rank L2. On the other
hand, based on (2), the representation of h in a matrix form is

H =

L2∑
l=1

L12∑
j=1

hlj
12 ⊗ hlj

11

(hl
2

)T
=

L2∑
l=1

L12∑
j=1

hlj
12 ⊗ hlj

11

 ◦ hl
2. (5)

The size of this matrix is L11L12 × L2, while its maximum rank is L2 (with L2 ≪ L11L12). Concluding,
based on (4) and (5), the rank of a third-order tensor is controlled from the rank of a matrix, which is
limited to small values. In other words, the sensitive problem of approximating the rank of a tensor is
avoided thanks to the control of a matrix rank.

In this decomposition framework, the main focus is the identification of the component impulse re-
sponses from (3). Thus, the identification of the impulse response h (with L = L11L12L2 coefficients) is
reformulated as a combination of three sets of coefficients, i.e., hl

2 of length L2 (with l = 1, 2, . . . , L2),

hlp
12 of length L12, and hlp

11 of length L11 (with l = 1, 2, . . . , L2 and p = 1, 2, . . . , P ). Correspondingly,
related to these three sets, we need to estimate L2

2, PL12L2, and PL11L2 coefficients, respectively. For the
common decomposition setup that involves L11L12 ≫ L2 and P ≪ L12 [2], this represents an important
dimensionality reduction, especially for large values of L.
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3 System Identification with the Tensorial RLS Algorithm

The objective of the conventional SISO system identification problem from (1) is to estimate h given the
input signal vector, x(n), and the reference signal, d(n). On the other hand, the decomposition-based
approach presented in Section 2 targets the estimation of three shorter sets of coefficients, which are
combined together. To this purpose, an RLS adaptive filter that exploits this decomposition technique will
be further developed in this section.

In this context, let us consider that ĥ(n) is an estimate of the impulse response h at the discrete-
time index n, so that the a priori error signal results in e(n) = d(n) − ĥT (n − 1)x(n). On the other
hand, using the impulse response decomposition from (3), we can also express its estimate as ĥ(n) =∑L2

l=1

∑P
p=1 ĥ

l
2(n)⊗ ĥlp

12(n)⊗ ĥlp
11(n), where ĥlp

11(n), ĥ
lp
12(n), and ĥl

2(n) are three shorter impulse responses
of length L11, L12, and L2, respectively. Next, in order to construct the cost functions of the RLS-based
algorithm, we can rewrite e(n) in three equivalent ways, with the purpose of “extracting” each individual
component. In the sequel, IL• denotes the identity matrix of size L• × L•.

First, we can develop the a priori error as

e(n) = d(n)− xT (n)

L2∑
l=1

P∑
p=1

[
IL2 ⊗ ĥlp

12(n− 1)⊗ ĥlp
11(n− 1)

]
ĥl
2(n− 1)

= d(n)− xT (n)

L2∑
l=1

P∑
p=1

Ĥlp
12,11(n− 1)ĥl

2(n− 1) = d(n)− xT (n)

L2∑
l=1

Ĥ
l

12,11(n− 1)hl
2(n− 1)

= d(n)− xT (n)Ĥ12,11(n− 1)ĥ2(n− 1) = d(n)− ĥ
T

2 (n− 1)x12,11(n), (6)

where Ĥlp
12,11(n) = IL2 ⊗ ĥlp

12(n) ⊗ ĥlp
11(n) is a matrix of size L × L2, Ĥ

l

12,11(n) =
∑P

p=1 Ĥ
lp
12,11(n), the

matrix Ĥ12,11(n) =
[
Ĥ

1

12,11(n) Ĥ
2

12,11(n) · · · Ĥ
L2

12,11(n)

]
has the size L × L2

2, the vector ĥ2(n) =[ (
ĥ1
2

)T
(n)

(
ĥ2
2

)T
(n) · · ·

(
ĥL2
2

)T
(n)

]T
has the length L2

2, and x12,11(n) = Ĥ
T

12,11(n − 1)x(n). As

we can notice, the form from (6) targets the extraction and separation of ĥl
2(n), l = 1, 2, . . . , L2.

Second, this error signal can be alternatively rewritten as

e(n) = d(n)− xT (n)

L2∑
l=1

P∑
p=1

[
ĥl
2(n− 1)⊗ IL12 ⊗ ĥlp

11(n− 1)
]
ĥlp
12(n− 1)

= d(n)− xT (n)

L2∑
l=1

P∑
p=1

Ĥlp
2,11(n− 1)ĥlp

12(n− 1) = d(n)− xT (n)

L2∑
l=1

Ĥ
l

2,11(n− 1)ĥ
l

12(n− 1)

= d(n)− xT (n)Ĥ2,11(n− 1)ĥ12(n− 1) = d(n)− ĥ
T

12(n− 1)x2,11(n), (7)

where Ĥlp
2,11(n) = ĥl

2(n) ⊗ IL12 ⊗ ĥlp
11(n) is a matrix of size L × L12, Ĥ

l

2,11(n) =[
Ĥl1

2,11(n) Ĥl2
2,11(n) · · · ĤlP

2,11(n)
]

is a matrix of size L × PL12, the vector ĥ
l

12(n) =[ (
ĥl1
12

)T
(n)

(
ĥl2
12

)T
(n) · · ·

(
ĥlP
12

)T
(n)

]T
has the length PL12, the matrix Ĥ2,11(n) =[

Ĥ
1

2,11(n) Ĥ
2

2,11(n) · · · Ĥ
L2

2,11(n)

]
has the size L × PL12L2, the vector ĥ12(n) =[ (

ĥ
1

12

)T

(n)

(
ĥ
2

12

)T

(n) · · ·
(
ĥ
L2

12

)T

(n)

]T
has the length PL12L2, and x2,11(n) =

Ĥ
T

2,11(n− 1)x(n). Clearly, (7) is designed for the extraction of ĥlp
12(n), l = 1, 2, . . . , L2, p = 1, 2, . . . , P .
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The third and final way to process the a priori error results in

e(n) = d(n)− xT (n)

L2∑
l=1

P∑
p=1

[
ĥl
2(n− 1)⊗ ĥlp

12(n− 1)⊗ IL11

]
ĥlp
11(n− 1)

= d(n)− xT (n)

L2∑
l=1

P∑
p=1

Ĥlp
2,12(n− 1)ĥlp

11(n− 1) = d(n)− xT (n)

L2∑
l=1

Ĥ
l

2,12(n− 1)ĥ
l

11(n− 1)

= d(n)− xT (n)Ĥ2,12(n− 1)ĥ11(n− 1) = d(n)− ĥ
T

11(n− 1)x2,12(n), (8)

where Ĥlp
2,12(n) = ĥl

2(n) ⊗ ĥlp
12(n) ⊗ IL11 is a matrix of size L × L11, Ĥ

l

2,12(n) =[
Ĥl1

2,12(n) Ĥl2
2,12(n) · · · ĤlP

2,12(n)
]

is a matrix of size L × PL11, ĥ
l

11(n) =[ (
ĥl1
11

)T
(n)

(
ĥl2
11

)T
(n) · · ·

(
ĥlP
11

)T
(n)

]T
is a vector of length PL11, Ĥ2,12(n) =[

Ĥ
1

2,12(n) Ĥ
2

2,12(n) · · · Ĥ
L2

2,12(n)

]
is a matrix of size L × PL11L2, the vector ĥ11(n) =[ (

ĥ
1

11

)T

(n)

(
ĥ
2

11

)T

(n) · · ·
(
ĥ
L2

11

)T

(n)

]T
has the length PL11L2, and x2,12(n) =

Ĥ
T

2,12(n− 1)x(n). The expression from (8) separates ĥlp
11(n), l = 1, 2, . . . , L2, p = 1, 2, . . . , P .

At this point, based on (6)–(8) and using the least-squares (LS) criterion [16], we can define three cost
functions associated to the component filters, as follows:

J̃
[
ĥ2(n)|ĥ12, ĥ11

]
=

n∑
k=1

λn−k
2

[
d(k)− ĥ

T

2 (n)x12,11(k)
]2

, (9)

J̃
[
ĥ12(n)|ĥ2, ĥ11

]
=

n∑
k=1

λn−k
12

[
d(k)− ĥ

T

12(n)x2,11(k)

]2
, (10)

J̃
[
ĥ11(n)|ĥ2, ĥ12

]
=

n∑
k=1

λn−k
11

[
d(k)− ĥ

T

11(n)x2,12(k)

]2
, (11)

where λ2, λ12, and λ11 are the forgetting factors, i.e., positive constants smaller than or equal to one.
As the notation from the left-hand sides of (9)–(11) suggests, two out of the three component impulse
responses are considered fixed within the LS criterion at a time, similar to a multilinear optimization
strategy [19]–[24].

Based on these considerations, three sets of normal equations are obtained from the minimization of

(9), (10), and (11) with respect to ĥ2(n), ĥ12(n), and ĥ11(n), respectively, i.e.,

R12,11(n)ĥ2(n) = r12,11(n), (12)

R2,11(n)ĥ12(n) = r2,11(n), (13)

R2,12(n)ĥ11(n) = r2,12(n), (14)
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where

R12,11(n) =
n∑

k=1

λn−k
2 x12,11(k)x

T
12,11(k) = λ2R12,11(n− 1) + x12,11(n)x

T
12,11(n), (15)

r12,11(n) =
n∑

k=1

λn−k
2 x12,11(k)d(k) = λ2r12,11(n− 1) + x12,11(n)d(n), (16)

R2,11(n) =

n∑
k=1

λn−k
12 x2,11(k)x

T
2,11(k) = λ12R2,11(n− 1) + x2,11(n)x

T
2,11(n), (17)

r2,11(n) =

n∑
k=1

λn−k
12 x2,11(k)d(k) = λ12r2,11(n− 1) + x2,11(n)d(n), (18)

R2,12(n) =

n∑
k=1

λn−k
11 x2,12(k)x

T
2,12(k) = λ11R2,12(n− 1) + x2,12(n)x

T
2,12(n), (19)

r2,12(n) =
n∑

k=1

λn−k
11 x2,12(k)d(k) = λ11r2,12(n− 1) + x2,12(n)d(n). (20)

In order to avoid matrix inversion operations for solving (12)–(14), the Woodbury formula (i.e., the matrix
inversion lemma) [16] can be used in (15), (17), and (19), respectively, thus obtaining the recursive updates:

P12,11(n) = λ−1
2

[
IL2

2
− k12,11(n)x

T
12,11(n)

]
P12,11(n− 1), (21)

P2,11(n) = λ−1
12

[
IPL12L2 − k2,11(n)x

T
2,11(n)

]
P2,11(n− 1), (22)

P2,12(n) = λ−1
11

[
IPL11L2 − k2,12(n)x

T
2,12(n)

]
P2,12(n− 1), (23)

where the notation P12,11(n), P2,11(n), and P2,12(n) stand for R−1
12,11(n), R

−1
2,11(n), and R−1

2,12(n), respec-
tively, while k12,11(n) = P12,11(n)x12,11(n), k2,11(n) = P2,11(n)x2,11(n), and k2,12(n) = P2,12(n)x2,12(n)
are the Kalman gain vectors [16], which are evaluated as

k12,11(n) =
P12,11(n− 1)x12,11(n)

λ2 + xT
12,11(n)P12,11(n− 1)x12,11(n)

, (24)

k2,11(n) =
P2,11(n− 1)x2,11(n)

λ12 + xT
2,11(n)P2,11(n− 1)x2,11(n)

, (25)

k2,12(n) =
P2,12(n− 1)x2,12(n)

λ11 + xT
2,12(n)P2,12(n− 1)x2,12(n)

. (26)

Finally, the filters’ updates result by developing the normal equations (12)–(14). For example, sequen-
tially using (16), (21), and (6) in (12), while considering the available solution from the previous time
index, i.e., ĥ2(n− 1) = P12,11(n− 1)r12,11(n− 1), we can develop

ĥ2(n) = P12,11(n)r12,11(n) = λ−1
2

[
IL2

2
− k12,11(n)x

T
12,11(n)

]
P12,11(n− 1) [λ2r12,11(n− 1) + x12,11(n)d(n)]

= ĥ2(n− 1) + k12,11(n)
[
d(n)− xT

12,11(n)ĥ2(n− 1)
]
= ĥ2(n− 1) + k12,11(n)e(n). (27)

In a similar manner, the updates for the other two component filters result by using (18), (22), and (7) in
(13), and then (20), (23), and (8) in (14), which finally lead to

ĥ12(n) = ĥ12(n− 1) + k2,11(n)e(n), (28)

ĥ11(n) = ĥ11(n− 1) + k2,12(n)e(n). (29)

The resulting RLS algorithm based on third-order tensor (TOT) decomposition, namely RLS-TOT,
is summarized in Table 1. The specific data structures used within the algorithm are constructed as
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Table 1 Recursive Least-Squares Algorithm Based on a Third-Order Tensor Decomposition (RLS-TOT).

Data:

x(n), d(n)

Decomposition setup:

L = L11L12L2, with L12 ≤ L11, L2 ≪ L11L12, and P < L12

Parameters:

forgetting factors: 0 ≪ λ2 ≤ 1, 0 ≪ λ12 < 1, 0 ≪ λ11 < 1

Initialization:

Initialize ĥ2(0), ĥ12(0), and ĥ11(0) as shown in Table 2

P12,11(0) = δ−1IL2
2
, P2,11(0) = δ−1IPL12L2 , P2,12(0) = δ−1IPL11L2 , δ > 0

For discrete-time index n = 1, 2, . . .

Construct Ĥ12,11(n− 1), Ĥ2,11(n− 1), and Ĥ2,12(n− 1) as shown in Table 2

x12,11(n) = Ĥ
T

12,11(n− 1)x(n)

x2,11(n) = Ĥ
T

2,11(n− 1)x(n)

x2,12(n) = Ĥ
T

2,12(n− 1)x(n)

e(n) = d(n)− ĥ
T

2 (n− 1)x12,11(n)

= d(n)− ĥ
T

12(n− 1)x2,11(n)

= d(n)− ĥ
T

11(n− 1)x2,12(n)

k12,11(n) =
P12,11(n− 1)x12,11(n)

λ2 + xT
12,11(n)P12,11(n− 1)x12,11(n)

k2,11(n) =
P2,11(n− 1)x2,11(n)

λ12 + xT
2,11(n)P2,11(n− 1)x2,11(n)

k2,12(n) =
P2,12(n− 1)x2,12(n)

λ11 + xT
2,12(n)P2,12(n− 1)x2,12(n)

P12,11(n) = λ−1
2

[
IL2

2
− k12,11(n)x

T
12,11(n)

]
P12,11(n− 1)

P2,11(n) = λ−1
12

[
IPL12L2 − k2,11(n)x

T
2,11(n)

]
P2,11(n− 1)

P2,12(n) = λ−1
11

[
IPL11L2 − k2,12(n)x

T
2,12(n)

]
P2,12(n− 1)

ĥ2(n) = ĥ2(n− 1) + k12,11(n)e(n)

ĥ12(n) = ĥ12(n− 1) + k2,11(n)e(n)

ĥ11(n) = ĥ11(n− 1) + k2,12(n)e(n)

Decompose ĥ2(n), ĥ12(n), and ĥ11(n) as shown in Table 2

shown in Table 2. It is known that the computational complexity order of the RLS-based algorithms
is proportional to the square of the filter length [16]. Therefore, as compared to the conventional RLS
algorithm [i.e., O(L2) = O(L11L12L2)

2], the proposed RLS-TOT has a lower computational complexity
order, i.e., O

[
L4
2 + (PL11L2)

2 + (PL12L2)
2
]
, for the common setup of the decomposition parameters. This

is supported in Fig. 1, where the complexity orders of the conventional RLS algorithm and RLS-TOT (with
different decomposition setups) are depicted, considering a long length impulse response with L = 2048.
Since the value of P is usually significantly smaller than L12 (as also supported in simulations), while
L12 ≪ L, the overall complexity of the RLS-TOT can be much lower as compared to its conventional
counterpart.
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Table 2 Data Structures for the RLS-TOT Algorithm.

Initialization: (0L• generally denotes an all-zeros column vector of length L•)

ĥl
2(0) =

[
ϵ 0T

L2−1

]T
, p = 1, 2, . . . , L2, 0 < ϵ ≤ 1

ĥ2(0) =
[ (

ĥ1
2

)T

(0)
(
ĥ2
2

)T

(0) · · ·
(
ĥL2
2

)T

(0)
]T

ĥlp
12(0) =

[
ϵ 0T

L12−1

]T
, l = 1, 2, . . . , L2, p = 1, 2, . . . , P, 0 < ϵ ≤ 1

ĥ
l

12(0) =
[ (

ĥl1
12

)T

(0)
(
ĥl2
12

)T

(0) · · ·
(
ĥlP
12

)T

(0)
]T

, l = 1, 2, . . . , L2

ĥ12(0) =

[ (
ĥ
1

12

)T

(0)

(
ĥ
2

12

)T

(0) · · ·
(
ĥ
L2

12

)T

(0)

]T

ĥlp
11(0) =

[
ϵ 0T

L11−1

]T
, l = 1, 2, . . . , L2, p = 1, 2, . . . , P, 0 < ϵ ≤ 1

ĥ
l

11(0) =
[ (

ĥl1
11

)T

(0)
(
ĥl2
11

)T

(0) · · ·
(
ĥlP
11

)T

(0)
]T

, l = 1, 2, . . . , L2

ĥ11(0) =

[ (
ĥ
1

11

)T

(0)

(
ĥ
2

11

)T

(0) · · ·
(
ĥ
L2

11

)T

(0)

]T

For discrete-time index n = 1, 2, . . .

Ĥlp
12,11(n− 1) = IL2 ⊗ ĥlp

12(n− 1)⊗ ĥlp
11(n− 1), l = 1, 2, . . . , L2, p = 1, 2, . . . , P

Ĥ
l

12,11(n− 1) =

P∑
p=1

Ĥlp
12,11(n− 1), l = 1, 2, . . . , L2

Ĥ12,11(n− 1) =
[

Ĥ
1

12,11(n− 1) Ĥ
2

12,11(n− 1) · · · Ĥ
L2

12,11(n− 1)

]
Ĥlp

2,11(n− 1) = ĥl
2(n− 1)⊗ IL12 ⊗ ĥlp

11(n− 1), l = 1, 2, . . . , L2, p = 1, 2, . . . , P

Ĥ
l

2,11(n− 1) =
[

Ĥl1
2,11(n− 1) Ĥl2

2,11(n− 1) · · · ĤlP
2,11(n− 1)

]
, l = 1, 2, . . . , L2

Ĥ2,11(n− 1) =
[

Ĥ
1

2,11(n− 1) Ĥ
2

2,11(n− 1) · · · Ĥ
L2

2,11(n− 1)

]
Ĥlp

2,12(n− 1) = ĥl
2(n− 1)⊗ ĥlp

12(n− 1)⊗ IL11 , l = 1, 2, . . . , L2, p = 1, 2, . . . , P

Ĥ
l

2,12(n− 1) =
[

Ĥl1
2,12(n− 1) Ĥl2

2,12(n− 1) · · · ĤlP
2,12(n− 1)

]
, l = 1, 2, . . . , L2

Ĥ2,12(n− 1) =
[

Ĥ
1

2,12(n− 1) Ĥ
2

2,12(n− 1) · · · Ĥ
L2

2,12(n− 1)

]
Obtain ĥ2(n), ĥ12(n), and ĥ11(n) as shown in Table 1

ĥ2(n) =
[ (

ĥ1
2

)T

(n)
(
ĥ2
2

)T

(n) · · ·
(
ĥL2
2

)T

(n)
]T

ĥ12(n) =

[ (
ĥ
1

12

)T

(n)

(
ĥ
2

12

)T

(n) · · ·
(
ĥ
L2

12

)T

(n)

]T

ĥ
l

12(n) =
[ (

ĥl1
12

)T

(n)
(
ĥl2
12

)T

(n) · · ·
(
ĥlP
12

)T

(n)
]T

, l = 1, 2, . . . , L2

ĥ11(n) =

[ (
ĥ
1

11

)T

(n)

(
ĥ
2

11

)T

(n) · · ·
(
ĥ
L2

11

)T

(n)

]T

ĥ
l

11(n) =
[ (

ĥl1
11

)T

(n)
(
ĥl2
11

)T

(n) · · ·
(
ĥlP
11

)T

(n)
]T

, l = 1, 2, . . . , L2

ĥ(n) =

L2∑
l=1

P∑
p=1

ĥl
2(n)⊗ ĥlp

12(n)⊗ ĥlp
11(n)

4 Simulation Results

The experimental framework considered in this section is echo cancellation, aiming to identify two echo
paths (h) with different characteristics, as shown in Fig. 2. The first impulse response used in simulations
represents a network echo path and it is obtained from the first cluster of G168 Recommendation [38], which
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Figure 1: Computational complexity order of the conventional RLS algorithm (with L = 2048) and the
proposed RLS-TOT using different values of L2. For L2 = 2, the decomposition setup of the RLS-TOT
involves L11 = L12 = 32, while for L2 = 4 we use L11 = 32 and L12 = 16.
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Figure 2: Impulse responses used in simulations, corresponding to (a) a network echo path of length
L = 512 and (b) a measured acoustic echo path of length L = 2048 (a magnified portion of the last L/2
coefficients is shown in the top-right of the subfigure).

is padded with zeros up to the length L = 512. The second impulse response characterizes a measured
acoustic echo path of length L = 2048. The input signal x(n) is either a first order autoregressive process,
AR(1) [which is obtained by filtering a white Gaussian noise through an AR(1) transfer function with the
pole at 0.8] or a speech signal; the sampling rate is 8 kHz. The output of the echo path, y(n), is corrupted
by a white Gaussian noise, w(n), with different signal-to-noise ratios (SNRs); a nonstationary background
noise is also used in the last experiment. In order to test the tracking capabilities of the algorithms, an
abrupt change of the impulse response is considered in most of the experiments, by changing the sign of
the coefficients after 2.5 seconds. The performance measure is the normalized misalignment (in dB), which

is evaluated as 20log10

[∥∥∥h− ĥ(n)
∥∥∥ / ∥h∥], where ∥·∥ denotes the Euclidean norm.

As indicated in Section 3, we consider that the length of the adaptive filter (L) is equal to the length
of the impulse response h. This setup is frequently used in most of the works related to the design of
adaptive filtering algorithms, in order to simplify the development and facilitate the notation. In practice,
the most challenging scenario corresponds to the under-modeling case, when the length of the adaptive
filter is smaller than the length of h. In such a scenario, the tail of the impulse response that cannot
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be modeled by the adaptive filter acts like an additional “noise” (i.e., residual echo), thus increasing the
misalignment. Due to this reason, the length of the adaptive filter (i.e., the echo canceler) should be large
enough to attenuate this effect. Regarding the decomposition of L, it is recommended to factorize it using
powers of two (to facilitate the implementation), taking into account that L2 ≪ L11L12 and L11 should be
closer or equal to L12.

The first set of experiments involves the network impulse response of length L = 512 [from Fig. 2(a)].
The comparisons are performed using the conventional RLS algorithm as a benchmark, together with
the previously developed RLS algorithm using the NKP decomposition (namely RLS-NKP) [36], and the
proposed RLS-TOT. The conventional RLS algorithm uses a single adaptive filter of length L = 512. Since
the RLS-TOT is developed following the line of the conventional RLS algorithm (as shown in Section 3),
we do not include in comparisons other fast RLS algorithms. In general, these fast RLS versions [with a
complexity order of O(L)] usually target the same performance as the conventional RLS algorithm, but
using a lower computational complexity. Moreover, they could require some additional parameters, besides
the forgetting factors [17]. In addition, as shown in [36], the RLS-NKP outperforms both the conventional
RLS algorithm and its fast version, i.e., the RLS using dichotomous coordinate descent (DCD) iterations,
namely RLS-DCD [39]. Several results from [36] also indicate that the conventional RLS algorithm and
the RLS-DCD version performs very similarly. Due to these reasons, in the first set of experiments, we
limit our comparisons to the conventional RLS benchmark and the recently developed RLS-NKP version
[36].

The RLS-NKP algorithm is based on a second-order decomposition of the global impulse response and
combines the estimates provided by two adaptive filters of lengths P ∗L∗

1 and P ∗L∗
2, with L = L∗

1L
∗
2 and

P ∗ < L∗
2 [36]; in this set of experiments, its decomposition setup uses L∗

1 = 32 and L∗
2 = 16. As explained

in Section 3, the proposed RLS-TOT algorithm involves three adaptive filters of lengths PL11L2, PL12L2,
and L2

2, where L = L11L12L2, with L2 ≪ L11L12 and P < L12. As shown in [2], the value of L2 should
be very small, e.g., 2, 3, or 4, while the performance differences are minor. Consequently, in the following
experiments that involve the network impulse response of length L = 512, we set L11 = L12 = 16 and
L2 = 2.

The main parameters of the RLS-based algorithms used in comparisons are the forgetting factors.
While the conventional RLS algorithm involves a single forgetting factor (denoted by λ), the RLS-NKP
algorithm [36] uses two forgetting factors, λ∗

1 and λ∗
2, which correspond to the two adaptive filters. Accord-

ingly, the proposed RLS-TOT algorithm requires three forgetting factors, i.e., λ11, λ12, and λ2. Choosing
the value of a forgetting factor involves a compromise between the main performance criteria, i.e., fast
convergence/tracking and low misalignment. In general, the value of a forgetting factor λ• can be related
to the associated filter length (generally denoted by L•), according to the relation [36]:

λ• = 1− (KL•)
−1 , (30)

with K > 1. In other words, the longer the filter, the larger the value of the forgetting factor should be
used. A higher value of K leads to λ• closer to one, which improves the accuracy of the solution (i.e., lower
misalignment), but sacrifices the tracking behavior. We should also outline that the initial convergence
rate is not always relevant for the RLS-based algorithms, while the tracking capability represents the true
assessment [16], [17]. Relation (30) is not limited to the decomposition-based algorithms that involve
low-rank approximations, but it can also be applied to the general case, e.g., for setting the values of the
forgetting factor for the conventional RLS algorithm [i.e., λ = 1 − (KL)−1], which updates a single (long
length) adaptive filter with L coefficients. In some of the following experiments, by varying the value of
K, we basically adjust the forgetting factors for detailed comparisons of the algorithms. For example,
by matching the same convergence rate/tracking of the algorithms, we can evaluate and distinguish their
performance in terms of misalignment (i.e., accuracy). Also, when reaching a similar misalignment level
(i.e., a similar accuracy), the differences between the algorithms can be assessed in terms of the tracking
capability.

In the first experiment reported in Fig. 3, all the algorithms use K = 30 in (30), for their associated
forgetting factors. The input signal is an AR(1) process and SNR = 20 dB. The decomposition-based
algorithms, i.e., RLS-NKP and RLS-TOT, use different values of their specific parameters, P ∗ and P ,
respectively. It can be noticed that both these algorithms track much faster as compared to the conventional
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Figure 3: Normalized misalignment of the conventional RLS algorithm, RLS-NKP [36], and proposed
RLS-TOT, for the identification of a network impulse response of length L = 512 [from Fig. 2(a)]. The
forgetting factors are set based on (30), using K = 30. The RLS-NKP uses L∗

1 = 32, L∗
2 = 16, and different

values of P ∗. The proposed RLS-TOT uses L11 = L12 = 16, L2 = 2, and different values of P . The input
signal is an AR(1) process, SNR = 20 dB, and the echo path changes after 2.5 seconds.
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Figure 4: Normalized misalignment of the conventional RLS algorithm, RLS-NKP [36], and proposed
RLS-TOT, for the identification of a network impulse response of length L = 512 [from Fig. 2(a)]. The
forgetting factors are set based on (30), using K = 10 for the conventional RLS algorithm, K = 15 for the
RLS-NKP, and K = 45 for the RLS-TOT. The other conditions are the same as in Fig. 3.

RLS benchmark, for a similar misalignment level (which is reached before the change of the system).
Among them, the proposed RLS-TOT outperforms the previously developed RLS-NKP in terms of both
convergence/tracking capability and misalignment level, in most cases when P ∗ = P . The exception
corresponds to P ∗ = P = 3, when the decomposition-based algorithms reach the same misalignment level,
but the RLS-TOT tracks faster as compared to the RLS-NKP. In fact, this represents a performance limit
(in terms of accuracy/misalignment), since the rank of the corresponding matrix of h [from Fig. 2(a)]
is 3 [36]. Increasing the values of the decomposition parameters beyond this limit will not reduce the
misalignment level. Overall, this experiment indicates that the RLS-TOT can use a lower value of the
decomposition parameter (P ), as compared to its RLS-NKP counterpart (P ∗). Even for P = 1, the
RLS-TOT provides a good attenuation of the misalignment, with a very fast tracking behavior.

The good tracking capability of the RLS-TOT algorithm suggests that we could further increase the
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Figure 5: Normalized misalignment of the conventional RLS algorithm (using different values of the for-
getting factor λ) and proposed RLS-TOT, for the identification of a network impulse response of length
L = 512 [from Fig. 2(a)]. The RLS-TOT uses λ11 and λ12 set based on (30), with K = 30, while λ2 = 1.
The other conditions are the same as in Fig. 3.

values of its forgetting factors, aiming to improve the attenuation of the misalignment, while slightly
sacrificing in terms of tracking. On the other hand, the forgetting factors of the conventional RLS algorithm
and the RLS-NKP should be increased in order to improve their tracking behavior, while paying in terms
of accuracy (i.e., higher misalignment). Such an approach is considered in Fig. 4, where the RLS-TOT
uses K = 45 in (30) for computing its forgetting factors, while the conventional RLS algorithm and the
RLS-NKP use K = 10 and K = 15, respectively. The other conditions are the same as in the previous
experiment. As we can notice, the tracking capability of the RLS-NKP is now close to the RLS-TOT,
for P ∗ = P . However, the proposed RLS-TOT outperforms its RLS-NKP counterpart in terms accuracy,
reaching lower misalignment levels. Even if the tracking capability of the conventional RLS algorithm has
been improved when using a smaller forgetting factor (i.e., a smaller value of K), its tracking reaction
is still significantly slower as compared to the decomposition-based algorithms (for similar misalignment
levels).

An interesting strategy that could be considered in case of the proposed RLS-TOT is to set the max-
imum value of the forgetting factor for the shortest filter (of length L2

2), i.e., λ2 = 1. Since this filter has
only a few coefficients, this would not impact too much the tracking behavior of the global filter, while
still improving its misalignment. This is supported in Fig. 5, where the RLS-TOT is compared to the
conventional RLS algorithm using different values of the forgetting factor. Based on the results of this
experiment, several conclusions can be outlined, as follows. First, the conventional RLS algorithm using
its maximum forgetting factor (i.e., λ = 1) could reach a misalignment level similar to the RLS-TOT using
P = 2 or 3, but it is significantly slower in tracking the abrupt change of the system. The value of λ should
be significantly increased (e.g., λ = 1 − 1/L) for the conventional RLS algorithm, in order to match the
tracking reaction of the proposed RLS-TOT. However, the misalignment of the conventional benchmark
is significantly higher in this case. Finally, the conventional RLS algorithm using a larger value of the
forgetting factor [e.g., λ = 1− 1/(5L)] can reach the misalignment level of the RLS-TOT using P = 1, but
it is still outperformed by the proposed algorithm in terms of tracking. Moreover, for P = 1, the RLS-TOT
uses a combination of three filters of lengths 32, 32, and 4, while the conventional RLS algorithm involves
a single adaptive filter with 512 coefficients. Thus, the computational amount of the RLS-TOT is far more
advantageous.

In the last simulation from the first set of experiments, we consider a noisy scenario by increasing
the level of the additive noise, such that SNR = 10 dB. The forgetting factors of the algorithms are set
based on (30), using K = 5 for the conventional RLS algorithm and K = 45 for the decomposition-based
versions, i.e., RLS-NKP and RLS-TOT. The other conditions are the same as in Fig. 3. As we can notice
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Figure 6: Normalized misalignment of the conventional RLS algorithm, RLS-NKP [36], and proposed
RLS-TOT, for the identification of a network impulse response of length L = 512 [from Fig. 2(a)], when
SNR = 10 dB. The forgetting factors are set based on (30), usingK = 5 for the conventional RLS algorithm,
and K = 45 for the RLS-NKP and RLS-TOT. The other conditions are the same as in Fig. 3.
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Figure 7: Normalized misalignment of the APA [40], RLS-NKP [36], and proposed RLS-TOT, for the
identification of an acoustic impulse response of length L = 2048 [from Fig. 2(b)]. The projection order of
APA is M = 8 and its step-size parameter is µ = 1. The forgetting factors of the RLS-NKP and RLS-TOT
are set based on (30), using K = 50. The RLS-NKP uses L∗

1 = 64, L∗
2 = 32, and different values of P ∗.

The proposed RLS-TOT uses L11 = L12 = 32, L2 = 2, and different values of P . The input signal is an
AR(1) process, SNR = 20 dB, and the echo path changes after 2.5 seconds.

from Fig. 6, the performance gain (in terms of both misalignment and tracking) is more apparent for the
proposed RLS-TOT, as compared to the RLS-NKP counterpart. This supports the conclusions from [2]
(obtained in the framework of the Wiener filter), which indicate that the TOT-based decomposition is
more efficient in challenging scenarios, e.g., in low SNR environments.

The second set of experiments is dedicated to the identification of an acoustic impulse response of
length L = 2048 [from Fig. 2(b)]. In this case, the decomposition setup of the RLS-NKP [36] considers
L∗
1 = 64 and L∗

2 = 32, while the proposed RLS-TOT uses L11 = L12 = 32 and L2 = 2. Due to its high
computational complexity, the conventional RLS algorithm is prohibitive in such scenarios that involve very
long length impulse responses. Therefore, for the purpose of comparisons, other more practical algorithms
will be indicated and involved in the following simulations.
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Figure 8: Normalized misalignment of the APA [40], DR-FRLS algorithm [41], and proposed RLS-TOT
(using different values of P ), for the identification of an acoustic impulse response of length L = 2048 [from
Fig. 2(b)], when SNR = 10 dB. The projection order of APA is M = 8 and different values of the step-size
parameter are used. The forgetting factor of the DR-FRLS is λ = 1 and different values of the data-reuse
parameter N are considered. The RLS-TOT uses λ11 and λ12 set based on (30), with K = 100, while
λ2 = 1. The decomposition setup of the RLS-TOT is the same from Fig. 7. The input signal is speech and
the echo path changes after 2.5 seconds.

In the first experiment from this set, we use the affine projection algorithm (APA) [40] as a benchmark,
which is a very popular choice in the framework of acoustic echo cancellation. The main reason is that
it outperforms the well-known normalized least-mean-square (NLMS) algorithm [16], especially for highly
correlated input signals. Also, the APA is less computationally expensive as compared to the conventional
RLS algorithm. The main parameters of APA are the step-size (denoted by µ; this is a positive constant
smaller than or equal to one) and the projection order (referred as M ; for M = 1, the APA reduces to the
NLMS algorithm). Higher values of µ and M improve the convergence rate and tracking of the algorithm,
but also increase the misalignment. In our experiment, we set µ = 1 (i.e., the fastest convergence mode)
and M = 8. The input signal is an AR(1) process and SNR = 20 dB. The comparing algorithms are RLS-
NKP [36] and the proposed RLS-TOT, with different values of the decomposition parameters (P ∗ and P ,
respectively). Since the acoustic echo paths are closer to full-rank [25], higher values of P ∗ and P should
be used, as compared to the previous scenario that involved the network impulse response; however, these
values are still significantly smaller than L∗

2 and L12, respectively. The results are presented in Fig. 7,
where we can firstly notice that the tracking capability of the RLS-TOT is clearly better as compared
to both RLS-NKP and APA. Besides, both RLS-based algorithms reach significantly lower misalignment
levels than the APA. Finally, it can be noticed that increasing the value of P beyond a certain limit (e.g.,
P = 8 in Fig. 7) does not improve the overall performance; this threshold is in the vicinity of L12/4.

Another interesting solution that can be used as a low-complexity alternative to the conventional RLS
is the recently developed data-reuse fast RLS (DR-FRLS) algorithm [41], with a complexity order of O(L).
Due to its data-reuse features, this algorithm can operate with the maximum value of the forgetting factor
(i.e., λ = 1), while tuning its tracking capability based on the data-reuse parameter, denoted by N (i.e.,
the number of data-reuse iterations). In addition, using λ = 1 basically overcomes the main stability
issues related to the fast versions of the RLS algorithm, which usually lead to divergence, stalling, etc.,
especially for highly correlated and nonstationary input signals [16]. In the experiment reported in Fig. 8,
we consider such a challenging scenario, by using a noisy speech signal as input, while also operating in
a noisy environment with SNR = 10 dB. The other algorithms involved in the comparisons are the APA
with M = 8 and different step-size parameters, and the proposed RLS-TOT using different values of P .
Two forgetting factors of the RLS-TOT are set based on (30), i.e., λ11 and λ12, while λ2 = 1. Using
larger values of the forgetting factors is recommended for the RLS-based algorithms, when dealing with
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Figure 9: Normalized misalignment of the APA [40], DR-FRLS algorithm [41], and proposed RLS-TOT
(using different values of P ), for the identification of an acoustic impulse response of length L = 2048 [from
Fig. 2(b)] that evolves based on a random walk model. The background noise is a recorded highway noise
and the input signal is a noisy speech sequence. The projection order of APA is M = 8 and different values
of the step-size parameter are used. The forgetting factor of the DR-FRLS is λ = 1 and different values
of the data-reuse parameter N are considered. The RLS-TOT uses λ11 and λ12 set based on (30), with
K = 100, while λ2 = 1. The decomposition setup of the RLS-TOT is the same from Fig. 7.

nonstationary input signals like speech. As we can notice, the RLS-TOT outperforms both APA and the
DR-FRLS algorithm, in terms of convergence rate/tracking and misalignment level, even for a small value
of the decomposition parameter (e.g., P = 6, which is less than L12/5). Reducing the step-size parameter
of APA decreases the misalignment level, but also the tracking capability. The DR-FRLS algorithm, using
a larger value of the date-reuse parameter N , improves the tracking, but sacrifices the accuracy of its
estimate (i.e., increasing the misalignment). In conclusion, the proposed RLS-TOT achieves a more proper
compromise between the main performance criteria.

In all the previous experiments, the tracking capabilities of the algorithms were tested by considering
an abrupt change of the impulse response, which represents a challenging scenario for the adaptive filter.
However, in the framework of acoustic echo cancellation, the impulse response could also slowly vary in
time due to small disturbances or natural changes in the environment. These include potential variations
of temperature, pressure, and humidity of the air [18]. In this context, a random walk model could be used
to emulate these changes. Consequently, in the final experiment, we consider that the acoustic impulse
response evolves according to such a model, i.e., h(n) = h(n − 1) + q(n), where h(0) is the echo path
from Fig. 2(b) and q(n) contains the samples of a zero-mean white Gaussian, with variance σ2

q. In our
scenario, we set σq = ε ∥h(0)∥, using ε = 10−5. In addition, the background noise could be nonstationary
and it is also amplified by the microphone of a hands-free device. Therefore, we use a recorded highway
noise, similar to a scenario in which there is an open window in the near-end room, which is located close
to a highway. The results of this experiment are shown in Fig. 9, using the comparing algorithms from
the previous simulation. The DR-FRLS algorithm using N = 1 is equivalent to the conventional fast
RLS (FRLS) algorithm [15], [16]. We can notice that the proposed RLS-TOT is more robust under this
scenario, as compared to the other algorithms. Forcing a fast convergence rate is not a feasible approach
under these nonstationary conditions, where the robustness of the algorithm should be the main target.
For example, this reflects in the large fluctuations of APA using µ = 1 (i.e., the fastest convergence mode).
A similar behavior can be noticed when increasing the data-reuse parameter of the DR-FRLS algorithm
(e.g., N = 12), targeting a higher convergence rate and tracking, while sacrificing the robustness. Overall,
the RLS-TOT achieves a better performance compromise among the comparing algorithms, in terms of
the convergence/tracking, misalignment, and robustness features.
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5 Discussion

The proposed RLS-TOT algorithm is based on a third-order decomposition of the impulse response and
combines (via the Kronecker product) the estimates provided by three shorter adaptive filters. As compared
to the previously developed iterative Wiener filter from [2], the RLS-TOT does not require any statistics’
estimates and is able to operate in time-variant environments. Besides, the three component adaptive
filters of the RLS-TOT are updated in parallel, contrary to the iterative Wiener filter that sequentially
alternates its solutions related to the three sets of Wiener-Hopf equations. This parallelism represents an
advantage in terms of the modularity of implementation. Since the overall performance of any adaptive
filter is influenced by its length, the proposed RLS-based version owns several specific advantages, as
follows.

First, as compared to the conventional RLS algorithm, the RLS-TOT has a much lower computa-
tional complexity for the common setup of its decomposition parameters. While the complexity order of
the conventional RLS is proportional to O(L2), the RLS-TOT requires O

[
L4
2 + (PL11L2)

2 + (PL12L2)
2
]

operations, where L = L11L12L2, with L2 ≪ L11L12 and P < L12. For example, in echo cancellation
scenarios, L can reach the order of thousands. Consequently, such a decomposition setup could lead to
significant computational reductions, since L11 and L12 are on the order of tens, L2 is limited to small
values (e.g., 2 or 3), while P ≪ L12 in most of the scenarios.

Second, the shorter the adaptive filter, the faster its convergence rate and tracking. Therefore, since the
global estimate of the RLS-TOT results based on a combination of the coefficients provided by three shorter
adaptive filters, it clearly outperforms the tracking capability of the conventional algorithms (e.g., RLS,
APA, and DR-FRLS [41]), which update a single long length adaptive filter. In addition, the proposed
RLS-TOT also outperforms the previously developed RLS-NKP [36], which is based on a second-order
decomposition (i.e., it combines the estimates of only two adaptive filters).

Third, there is always a compromise between the convergence rate/tracking and accuracy (i.e., mis-
alignment) of the solution, in terms of setting the parameters of the adaptive filter (e.g., the forgetting
factors of RLS-based algorithms). From this point of view, the proposed RLS-TOT is more robust to this
compromise as compared to the comparing algorithms, since its forgetting factors can reach larger values
(i.e., closer to one), slightly sacrificing the tracking capability, but improving the accuracy of its estimate.
For example, one possible solution is to set λ2 = 1 (i.e., the maximum value), which corresponds to the
shortest component filter of length L2

2, while tuning only the other two forgetting factors (λ11 and λ12).
Besides, using larger values of the forgetting factors is also a benefit in terms of the numerical robustness of
the RLS-based algorithms [15], [16], especially when dealing with nonstationary input signals like speech.
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